Monte Carlo Simulation Application for Meteorological Parameter Prediction

Muhammad Nur Rizqi(1), Cahya Sugiarto(2), Ghaitsa Afifah(3),


(1) State College of Meteorology Climatology and Geophysics
(2) State College of Meteorology Climatology and Geophysics
(3) State College of Meteorology Climatology and Geophysics

Abstract


Rainfall in Indonesia, particularly in southern coastal regions such as Cilacap Regency, is strongly influenced by the interaction of multiple meteorological variables. This study aims to predict monthly meteorological parameters consisting of rainfall, air temperature, wind speed, humidity, and solar radiation intensity using the Monte Carlo simulation method based on historical data from 2022 to 2024 obtained from the Tunggul Wulung Cilacap Class III Meteorological Station. The simulation process involved probability distribution fitting and random number generation for 10,000 iterations for each parameter. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE). The results show that air temperature and humidity achieved the highest predictive accuracy, with MAPE values of 4.04 percent and 3.18 percent. These values indicate high model consistency. Solar radiation intensity and wind speed produced moderate accuracy with MAPE values of 38.83 percent and 44.44 percent. In contrast, rainfall exhibited low predictive performance with a MAPE of 53.13 percent. This low performance is primarily caused by high temporal variability and limited data length. The findings demonstrate that Monte Carlo simulation is effective for predicting meteorological variables with stable patterns but less suitable for parameters with extreme fluctuations such as rainfall
 

Keywords


Monte Carlo Simulation; Meteorological Prediction; Rainfall Forecasting; Weather Modeling; MAPE Evaluation

Full Text:

PDF

References


J. Susanto, X. Zheng, Y. Liu, and C. Wang, “The impacts of climate variables and climate-related extreme events on island country’s tourism: Evidence from Indonesia,” Journal of Cleaner Production, vol. 276, p. 124204, Sep. 2020, doi: 10.1016/j.jclepro.2020.124204.

M. S. Pathan et al., “A systematic analysis of meteorological parameters in predicting rainfall events,” IEEE Access, vol. 13, pp. 111529–111541, Jan. 2025, doi: 10.1109/access.2025.3573091.

F. I. A. Rashid, M. I. Idris, I. A. A. Rahman, and M. R. M. Zin, “Meteorological effects on atmospheric radioactive particles: a review of recent research,” Journal of Nuclear Science and Technology, vol. 62, no. 10, pp. 881–914, Jun. 2025, doi: 10.1080/00223131.2025.2519707.

D. B. Stephenson dan F. J. Doblas-Reyes, "Statistical methods for interpreting Monte Carlo ensemble forecasts," Tellus, Series A: Dynamic Meteorology and Oceanography, vol. 52, no. 3, pp. 300–322, 2000, doi: 10.1034/j.1600-0870.2000.d01-5.x.

H. Wang et al., “Predicting climate anomalies: A real challenge,” Atmospheric and Oceanic Science Letters, vol. 15, no. 1, p. 100115, Aug. 2021, doi: 10.1016/j.aosl.2021.100115.

C. Montes, N. Acharya, P. R. Hossain, T. S. A. Babu, T. J. Krupnik, and S. M. Q. Hassan, “Developing a framework for an early warning system of seasonal temperature and rainfall tailored to aquaculture in Bangladesh,” Climate Services, vol. 26, p. 100292, Apr. 2022, doi: 10.1016/j.cliser.2022.100292.

S. Andriani, D. M. Akhmad, and F. D. Wihartiko, “Pemodelan Monte Carlo Untuk Prediksi Sifat Hujan Harian,” Computatio Journal of Computer Science and Information Systems, vol. 4, no. 2, p. 124, Dec. 2020, doi: 10.24912/computatio.v4i2.9697.

A. Arini and H. Cipta, “Prediction of Monthly Rainfall with Using Monte Carlo Simulation in the Medan City Area,” Jurnal Sisfokom (Sistem Informasi Dan Komputer), vol. 13, no. 3, pp. 428–433, Nov. 2024, doi: 10.32736/sisfokom.v13i3.2307.

G. Aktürk, H. Çıtakoğlu, V. Demir, and N. Beden, “Meteorological drought Analysis and regional frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management,” Water, vol. 16, no. 15, p. 2124, Jul. 2024, doi: 10.3390/w16152124

S. Ghahramani, Fundamentals of probability. CRC Press. 2024. doi: 10.1201/9781003332893

R. Montes-Pajuelo, Á. M. Rodríguez-Pérez, R. López, and C. A. Rodríguez, “Analysis of Probability Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from Mathematical and Statistical Methods,” Mathematics, vol. 12, no. 7, p. 1093, Apr. 2024, doi: 10.3390/math12071093

D. A. Juliantho, G. W. Nurcahyo, and N. B. Hendrik, “Simulasi Metode Monte Carlo untuk Mengatur Sistem Antrian Truk,” Jurnal KomtekInfo, pp. 149–156, Sep. 2024, doi: 10.35134/komtekinfo.v11i3.552

R. W. Shonkwiler and F. Mendivil, “Introduction to Monte Carlo methods,” in Undergraduate texts in mathematics, 2024, pp. 1–46. doi: 10.1007/978-3-031-55964-8_1

D. A. Juliantho, G. W. Nurcahyo, and N. B. Hendrik, “Simulasi Metode Monte Carlo untuk Mengatur Sistem Antrian Truk,” Jurnal KomtekInfo, pp. 149–156, Sep. 2024, doi: 10.35134/komtekinfo.v11i3.552

R. Kumar, “Stochastic modelling of material variability in structural dynamics: A threefold comparison of Monte Carlo, polynomial chaos, and random sampling techniques,” Ministry of Science and Technology Vietnam, vol. 66, no. 2, pp. 33–51, Jun. 2024, doi: 10.31276/vjste.66(2).33-51.

N. E. L. Amalia, N. Y. Yunhasnawa, and A. R. Rahmatanti, “Sistem Prediksi Penjualan Frozen Food dengan Metode Monte Carlo (Studi Kasus: Supermama Frozen Food),” Jurnal Buana Informatika, vol. 13, no. 02, pp. 136–145, Oct. 2022, doi: 10.24002/jbi.v13i02.6496

X. Wang et al., “Investigating the deviation between prediction accuracy metrics and control performance metrics in the context of an ice-based thermal energy storage system,” Journal of Energy Storage, vol. 91, p. 112126, May 2024, doi: 10.1016/j.est.2024.112126.

R. A. Ramadan and S. Boubaker, “Predictive Modeling of Groundwater Recharge under Climate Change Scenarios in the Northern Area of Saudi Arabia,” Engineering Technology & Applied Science Research, vol. 14, no. 2, pp. 13578–13583, Apr. 2024, doi: 10.48084/etasr.7020.


Refbacks

  • There are currently no refbacks.


Indexs by:

    http://click.accelo.com/wf/click?upn=KMJOFt8368XHDV6m09YF-2BTGnIfzAj8ov81j3S3dKrgX-2FSP8SBOSe2Y-2FRl3XtyVdizj-2FkXxL-2F-2FBp-2BQ3h3JmTUMA-3D-3D_m-2BrHp932aZXzO0XgkbwedgKvn5QWlonE5sMgaivZdq7OsTVSTY4hEqzD-2Bq18nXAyLJBneuiZlt38H2UV92XxYUTcMxEriSXBXl4R62YQbqlgPCj4HTJTRlEeMBija8NFLIgPs2I1UuCR2UCZXSiKb2ocM6V4QaW-2FslHJUiSZesKuX9OlsnCNztILLyuQC4ZZvCegHVeQWDMYSYLvWzv-2FxgZ4v9s-2B2Ehf-2FEsLNi2Ea97Xe1t2vA4kmxioKhj90qGfUs7WlNUb-2B3FL0DjX8F4BTUuUiemqtsGMdQg-2By7qV9RY-3D       


Journal of Computer Science and Engineering (JCSE)
ISSN 2721-0251 (online)
Published by : ICSE (Institute of Computer Sciences and Engineering)
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.