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Hydro meteorological disasters are common in Indonesia. Rainfall predictions can 

help mitigate the impact of these disasters. This research aims to compare the 

accuracy of monthly rainfall prediction models using Seasonal Autoregressive 

Integrated Moving Average (SARIMA) and Long Short-Term Memory (LSTM) 

methods. The input data consists of monthly rainfall records from four locations: 

Sampali, Kualanamu, Belawan, and Tuntungan, located around Medan, North 

Sumatra. The dataset spans from 2000 to 2020, with training data from 2000 to 2018 

and test data from 2019 to 2020. The accuracy assessment reveals that Belawan has 

the largest RMSE values for both models, measuring 27.68 mm for LSTM and 28.36 

mm for SARIMA. Belawan records the highest MAE values, with LSTM and SARIMA 

yielding 5.65 mm and 5.79 mm, respectively. SARIMA models effectively capture 

general trends and seasonality in linear time series data with clear patterns but 

struggle with extreme changes or sharp fluctuations due to their reliance on linear 

relationships. In contrast, LSTMs are effective at modeling complex, non-linear 

relationships, making them suitable for capturing general trends, seasonal patterns, 

and more complicated variations in the data. Understanding the characteristics of the 

data is crucial before applying SARIMA or LSTM models. 
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1. Introduction 

According to data from the National Disaster Management Agency (BNPB) in 2023, Indonesia 

experienced a significant increase in hydro-meteorological disasters. Hydro-meteorological disasters 

include floods, landslides, and tornadoes, which often occur in various regions of Indonesia [1];[2];[3]. 

The main causes of these disasters are high rainfall, climate change, and environmental damage due to 

deforestation and unplanned urbanization. Considering Indonesia's geographical and tropical climate 

conditions, the likelihood of hydro-meteorological disasters is very high. Additionally, global climate 

change, which increases the frequency and intensity of extreme weather, further exacerbates the risk of 

hydro-meteorological disasters in Indonesia in the future. Therefore, better mitigation and adaptation 

efforts are needed to reduce the impact of these disasters [4]. 

Information about rainfall is crucial for mitigation and adaptation needs, especially concerning hydro-

meteorological disasters such as floods and landslides [4];[5];[6]. Predicted rainfall data for short 

periods, such as 1 to 2 years ahead, is essential for effective planning and decision-making. These 

predictions can be made using statistical or machine learning methods, each of which has its advantages 
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in processing historical weather data and climate trends [7]. Statistical methods can provide a general 

overview based on past rainfall patterns, while machine learning can process more complex data and 

produce more accurate predictions by considering various related variables. With accurate rainfall 

prediction information, governments and communities can prepare mitigation measures such as flood 

control infrastructure construction, drainage system improvements, and better spatial planning 

management. Additionally, this information also aids in long-term adaptation by designing strategies to 

reduce the risk and impact of hydro-meteorological disasters in the future.  

Weather forecasting is one solution that can be used to address the issue of data provision. A good 

forecast should have high accuracy and precision. Various methods have been developed and refined for 

predicting rainfall, each with distinct strengths and limitations. There are several methods that can be 

used to predict future rainfall using statistical approaches such as SARIMA and the LSTM algorithm. 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model extends the ARIMA model 

by incorporating seasonal components. ARIMA focuses on past and present values of the dependent 

variable to generate accurate short-term forecasts but tends to perform poorly over longer periods due to 

its assumption of stationarity [8].  Long Short-Term Memory (LSTM) networks, a type of recurrent 

neural network (RNN), have shown considerable promise in time series analysis, including rainfall 

prediction. LSTM's ability to remember long-term sequences and process large datasets makes it 

particularly suitable for handling the seasonal and complex nature of rainfall data [9];[10]. The accuracy 

of monthly rainfall predictions using SARIMA and LSTM varies based on data characteristics. In regions 

like Indonesia, where complex topography and monsoon-driven climate result in highly variable rainfall 

patterns, the predictive accuracy of these models can be impacted by the availability of high-resolution 

historical weather data [11];[12]. 

Monthly rainfall predictions using LSTM and SARIMA methods have been widely applied to various 

types of data, including rainfall data. However, the prediction accuracy of monthly rainfall data for both 

methods can vary depending on the characteristics of the data [11]. Rainfall prediction in Indonesia faces 

specific challenges due to its complex topography and monsoon-driven climate, which lead to highly 

variable rainfall patterns. Additionally, the lack of high-resolution historical weather data in many 

regions of Indonesia can hinder the training and validation of prediction models, impacting their 

accuracy. This study aims to analyze the accuracy of monthly rainfall predictions using SARIMA and 

LSTM models in the Medan area and its surroundings. By comparing the models based on accuracy and 

error metrics, the study seeks to identify the better prediction model to serve as a reference for 

applications requiring high-quality monthly rainfall data. Accurate predictions support various sectors, 

including agriculture, urban planning, and disaster management, by providing reliable weather forecasts. 

The better prediction model, based on accuracy and minimal error, is expected to serve as a reference 

for various applications that require high-quality monthly rainfall data. Accurate monthly rainfall 

information can support multiple sectors that depend on weather forecast information. 

2. Method 

In this study, monthly rainfall data from four rainfall stations around the Medan area in North Sumatra, 

namely Sampali, Belawan, Kualanamu, and Tuntungan, were collected for the period from 2000 to 2020. 

The data was obtained from BMKG (Badan Meteorologi Klimatologi dan Geofisika) Regional I Medan, 

North Sumatra, Indonesia, and can be freely downloaded from https://dataonline.bmkg.go.id/. A total of 

240 time series data points were collected for analysis. 

https://dataonline.bmkg.go.id/
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The collected data was divided into two parts: training and testing datasets. Data from 2000 to 2018 was 

used as the training dataset, while data from 2019 to 2020 was used as the testing dataset. This division 

allows for the development of predictive models based on historical rainfall patterns and the assessment 

of the models' performance on recent data. 

In data processing, the SARIMA (Seasonal Autoregressive Integrated Moving Average) and LSTM 

(Long Short-Term Memory) methods were used to build the rainfall prediction models. SARIMA was 

chosen for its ability to handle time series data with seasonal patterns, while LSTM was used for its 

capability to learn long-term dependencies in time series data. After developing the models, accuracy 

assessment was conducted to evaluate the performance of both methods. 

 

Figure 1. Schematic Flow of Research. 

 

2.1. Data used 

Data collection, Monthly rainfall data from four rainfall stations around the Medan area in North Sumatra 

province were collected, covering the period from 2000 to 2020. The rainfall stations included in the 

study are Sampali, Belawan, Kualanamu, and Tuntungan. The data was obtained from BMKG (Badan 

Meteorologi Klimatologi dan Geofisika) Regional I Medan, North Sumatra, Indonesia. Data can be 

downloaded by free from: https://dataonline.bmkg.go.id/.  The total number of time series data is 240 

data.  

Data preparation, the collected data was divided into training and test datasets. The data from 2000 to 

2018 was used as the training dataset, while the data from 2019 to 2020 was used as the test dataset. This 

division allows for the development of predictive models based on historical rainfall patterns and the 

assessment of the models' performance on recent data. 

2.2. Software used 

The research was conducted using several tools for modeling SARIMA and LSTM. The tools used in 

this study consist of freely downloadable software: Anaconda, provides many pre-installed data science 

libraries, such as Numpy, Pandas, Matplotlib, and others. Spyder is an Integrated Development 

Environment (IDE) used for developing Python applications. As an IDE, this application is specifically 

designed for numerical data analysis and provides various useful tools and features for data scientists 

and researchers. Microsoft Excel is spreadsheet software used for data analysis and visualization.  

In this study, specific parameters were selected for the SARIMA and LSTM models to optimize the 

accuracy of monthly rainfall predictions. For the SARIMA model, the ARIMA order (p, d, q) was 

determined using ACF and PACF plots, along with stationarity tests, to effectively capture the 

autoregressive and moving average components. The seasonal order (P, D, Q, S) was chosen based on 

https://dataonline.bmkg.go.id/
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the observed seasonal patterns and periodicity in the data, which are essential for accurately modeling 

seasonal variations in rainfall. Additionally, the AIC/BIC criteria were utilized to select a model that 

balances fit and complexity, ensuring a parsimonious yet effective model. 

For the LSTM model, the number of lagged observations (timesteps) was chosen to capture the temporal 

dependencies in the data, with domain knowledge and experimentation guiding the optimal number. The 

number of LSTM units and layers was determined through cross-validation, aiming to balance model 

complexity and computational efficiency. More units and layers can capture complex patterns but require 

more data and computational power. The 'relu' activation function and 'Adam' optimizer were selected 

for their effectiveness in training deep learning models, while the Mean Squared Error (MSE) loss 

function was used for regression tasks like rainfall prediction, as it penalizes larger errors more 

significantly. This careful selection of parameters ensures that both the SARIMA and LSTM models are 

well-tuned to capture the patterns and dependencies in the rainfall data, leading to more accurate and 

reliable monthly rainfall predictions for the Medan area and its surroundings. 

2.2.1. SARIMA 

The SARIMA model comprises several components: Autoregressive (AR) term: The AR component 

indicates the dependency of the current value on previous values in the time series. The number of AR 

terms is denoted by 𝑝, for example, AR(𝑝). Integrated (I) term: The I component indicates the number 

of differentiations needed to make the data stationary. Differentiation is performed to eliminate trends or 

seasonal patterns in the data. The number of I terms is denoted by 𝑑d, for example, I(𝑑). Moving Average 

(MA) term: The MA component indicates the dependency between the current value and the residual 

values (the difference between the current value and the predicted value) in previous periods. The number 

of MA terms is denoted by 𝑞, for example, MA(𝑞). 

The SARIMA model adds a seasonal component to each ARIMA component. The ARIMA model is 

constructed with orders (p, d, q), which is a mixed model of autoregressive (AR) with order p followed 

by moving average (MA) with order q that undergoes differencing (d) times. Data series plots should 

assume stationarity. If the data to be processed is not stationary, differencing needs to be performed, and 

initial values of the d order can be estimated. However, differencing is unnecessary if the data to be 

processed is already stationary [13][14][15]. ARIMA is a type of short-term prediction model in time 

series analysis. Due to its systematic and flexible nature, and its ability to capture more original time 

series information, this method is widely used in meteorology, engineering technology, marine studies, 

economic statistics, and forecasting technology. Unlike the ARIMA model, the SARIMA model has six 

components: autoregressive, integrated, moving average, seasonal autoregressive, seasonal integrated, 

and seasonal moving average [16]. The ARIMA model equation (p,d,q) can be written as follows: 

𝑌𝑡 =  ξ + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ∅3𝑌𝑡−3 + ⋯ + ∅𝑝𝑌𝑡𝑝 +  𝜀𝑡…  (1) 

 

Where : 

Yt  = stationary series value 

ξ   = model mean value 

Ø j  = self-regression model parameters (j = 1, 2, ……., p) 

ε t   = normally distributed random error with mean zero and variance σ 2 

 



Journal of Computer Science an Engineering (JCSE) 
Vol. 5, No. 2, August 2024, pp. 99-114 

e-ISSN 2721-0251 

 

103 
 

2.2.2. Long Short Term Memory (LSTM) 

LSTM is an architecture of RNN (Recurrent Neural Network). LSTM is capable of analyzing, 

forecasting, and categorizing information that has been stored for a long time [17];[18]. LSTM can be 

used to process sequential data, thus it can be employed for predicting time series data. LSTM can detect 

data to be stored and data not to be used for pruning, as LSTM consists of 4 neuron layers commonly 

referred to as gates to regulate memory in each neuron. Research is conducted by predicting weather data 

such as rainfall and temperature using the Long Short Term Memory (LSTM) method. The predicted 

model results can provide suggestions for implementing a good weather prediction model through 

predictions using the LSTM method [19]. One of the key advantages of LSTM is its ability to remember 

long-term sequences (data size), which is difficult to achieve with traditional feature techniques. LSTM 

can handle larger data sizes and utilize all data information as input, thereby constructing a deep network 

[14]. The first layer is an LSTM layer with a specified number of units, followed by another LSTM layer 

with its own specified number of units. Dropout is also applied after each LSTM layer to control 

overfitting. The final layer is an output layer with a single unit activation and a sigmoid function, as this 

is a binary classification problem [20]. 

The mathematical calculations in the LSTM model carried out at each stage are given as follows: 

 forget gate :      f t = σ ( W f x t + R f h t − 1 + b f ) = σ( 𝐟t̅ )  

 

(2) 

 

 

 

 input gate :     i t = σ ( W i x i + R i h t − 1 + b i )  = σ( 𝐈̅̇t ) 

 candidate state : z t = tanh ( W c x c + R c h t − 1 + b c ) = tanh ( 𝐳̅t )  

 cell state :     c t = f t ʘ c t − 1 + i t ʘ z t     

 cell g a t e :        o t = σ ( W o x o + R o h t − 1 + b o ) = σ( 𝐨̅t )  

 output :     h t = o t ʘ tanh ( c t )   

Where xt   is the input vector at time t, W and R are weight matrices. bt is the bias vector. σ and 

tanh are activation/transfer functions, and ʘ denotes element wise multiplication. [21]provides 

the detailed algorithm. 

2.3. Accuracy Assessment 

2.3.1.  Root Mean Square Error 

Root Mean Square Error (RMSE) is one method used to evaluate forecasting predictions, employed to 

measure the accuracy level of a model's forecasts. RMSE is the square root of the average of the squared 

errors and also represents the magnitude of errors produced by a forecasting model [22];[23]. RMSE 

(Root Mean Square Error) indicates the magnitude of deviation between predicted rainfall values and 

actual rainfall values. The larger the RMSE value, the greater the discrepancy between the predicted total 

rainfall and the actual total rainfall. Conversely, the smaller the RMSE value, the better the prediction of 

total rainfall compared to the actual total rainfall. Minimizing the error level can improve prediction 

accuracy [24]. RMSE can be expressed with the formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1
 

 

                          (3) 

Where: 

RMSE  = Root Mean Square Error 
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𝑦𝑖 = bulk Rain observation  

𝑥𝑖  = bulk rain model output 

n  = Number of data 

2.3.2. Mean Absolute Error 

Mean Absolute Error (MAE) is one method used to measure the accuracy level of a forecasting 

model. The MAE value indicates the average absolute error between the forecasted/predicted values and 

the actual values [25];[26]. MAE provides results that can be directly interpreted [27]. It is a commonly 

used measurement for predicting errors in time series analysis, where the term Mean Absolute Deviation 

(MAD) is sometimes used interchangeably, referring to the Mean Absolute Error [28]. The larger the 

MAE (Mean Absolute Error) value, the greater the error in the output, indicating that the model is less 

optimal in making rainfall predictions [29].  MAE can be explained as follows: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=0

 
 

                             (4) 

Where: 

MSE  = Mean Absolute Error 

𝑓𝑖  = value of forecasting results 

𝑦𝑖 = actual value 

𝑛 = amount of data 

 

2.3.3. Temporal Pattern Analysis 

The objectives of the Temporal Pattern Analysis line graph are multifaceted, aiming to provide a 

comprehensive understanding of rainfall trends and model performance. Firstly, the graph visualizes 

temporal trends, helping to identify patterns, seasonality, and anomalies in the rainfall data over time. 

This allows for a clear illustration of how rainfall fluctuates in each location. Additionally, the graph 

serves to compare model predictions by plotting the actual rainfall data against the predicted values from 

both LSTM and SARIMA models. This comparison highlights the accuracy and efficacy of each model 

in capturing the temporal dynamics of rainfall.  Furthermore, the graph aids in evaluating model 

performance by examining how closely the predicted values align with the actual rainfall over different 

periods, thus identifying periods where the models underperform or overperform. Anomaly detection is 

another critical objective, as the graph helps in spotting significant deviations between predicted and 

actual values, which may indicate model limitations or unique climatic events. Lastly, the graph supports 

decision-making by offering visual evidence to stakeholders, enabling them to determine which model 

is more suitable for specific locations based on temporal prediction performance. Overall, the Temporal 

Pattern Analysis line graph is a valuable tool for understanding, comparing, and enhancing rainfall 

prediction models. 

3. Results and Discussion 

3.1 SARIMA  

SARIMA determines the model order for each Region automatically. The programming in Python 

employs the "auto_arima" system for model order selection. Non-seasonal model orders are expressed 

in lowercase (p,d,q), while seasonal model orders are expressed in uppercase (P,D,Q). The seasonal 

component is denoted by 's', where 12 represents the number of months in one year. The use of the 
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"auto_arima" function automates the complex task of model selection by testing various combinations 

of p, d, q, P, D, Q, and s parameters to find the best fit for the given data. This is particularly useful for 

time series data with strong seasonal patterns, such as monthly rainfall data, where the model needs to 

account for both short-term fluctuations and annual seasonal effects.  Table 1 would provide an example 

of how these parameters are applied to the rainfall data for each region, demonstrating the specific model 

orders selected by "auto_arima" for both non-seasonal and seasonal components. 

Table 1. Non-seasonal model orders and seasonal model orders of SARIMA for all locations 

SARIMA model (p,d,q) (P,D,Q,s) 

Sampali (1, 0, 0)(2, 0, 0, 12) 

Kualanamu (2, 1, 0)(1, 0, 1, 12) 

Belawan (2, 0, 0)(1, 0, 2, 12) 

Tuntungan (1, 0, 0)(2, 0, 0, 12) 

3.2 LSTM  

The number and size (number of neurons) of hidden layers in the LSTM algorithm significantly influence 

the model's ability to capture patterns in sequential data. In this study, the hidden layer structure in the 

LSTM model is a crucial part of the artificial neural network (ANN) model creation process. The model 

comprises two hidden layers, each using the Rectified Linear Activation (ReLU) function. ReLU is a 

popular activation function that deactivates neurons with negative input values and leaves positive input 

values unchanged, helping to avoid issues like the vanishing gradient problem. The first hidden layer 

consists of 64 units and uses ReLU as the activation function, with an input shape specified by the 

look_back parameter. It is implemented in the script as model.add(Dense(64, activation='relu', 

input_shape=(look_back,))). The second hidden layer consists of 32 units and also uses the ReLU 

activation function, implemented as model.add(Dense(32, activation='relu')). These hidden layers 

process the input data with appropriate dimensions to capture underlying patterns without overfitting or 

underfitting. The Sequential approach is used to build the model, where layers are added one after the 

other, making the neural network architecture straightforward to construct and understand. By specifying 

the hidden layers and their respective parameters, the LSTM model is better equipped to process 

sequential data and uncover intricate patterns in the rainfall data, ultimately leading to more accurate 

predictions. 

3.3 Accuracy Assessment 

3.3.1. RMSE 

The RMSE comparison graph is plotted on an actual scale (mm). The largest RMSE values for both 

models are found in Belawan, with 27.68 mm for LSTM and 28.36 mm for SARIMA. In contrast, the 

smallest RMSE values for LSTM are in Sampali, with 14.45 mm, while the smallest RMSE values for 

SARIMA are in Tuntungan, with 2.61 mm. This indicates that while LSTM performs better in some 

locations, SARIMA performs significantly better in others, particularly in Tuntungan (Figure 2). 

 



Journal of Computer Science an Engineering (JCSE) 
Vol. 5, No. 2, August 2024, pp. 99-114 

e-ISSN 2721-0251 

 

106 
 

 
Figure 2. The RMSE Comparison Graph Shows the RMSE Values for LSTM and SARIMA Models Across Four 

Locations: Sampali, Kualanamu, Belawan, and Tuntungan.  

The analysis of the provided RMSE data unveils insights into the performance of LSTM and SARIMA 

models across different regions. Notably, the comparison highlights distinct strengths and weaknesses 

of each model. In Belawan, both models exhibit higher RMSE values, indicating challenges in accurately 

predicting environmental variables in this area. However, in Sampali, the LSTM model showcases better 

predictive accuracy with a smaller RMSE, suggesting its proficiency in capturing temporal dependencies. 

Conversely, SARIMA outperforms LSTM in Tuntungan, indicating its effectiveness in capturing 

seasonal and autoregressive components of the data. These findings underscore the importance of 

understanding regional variations and model-specific characteristics for improving predictive accuracy. 

Further investigation and refinement of the models, considering the unique dynamics of each region, 

could lead to enhanced forecasting capabilities in hydrological or environmental applications. 

3.3.2. MAE 

The MAE comparison graph is presented on an actual scale (mm), showcasing the performance of both 

LSTM and SARIMA models across the four locations. Notably, the highest MAE values are recorded in 

Belawan, with LSTM and SARIMA yielding 5.65 mm and 5.79 mm respectively. Conversely, the 

smallest MAE values are observed in  Sampali, with LSTM achieving 2.95 mm and SARIMA 

outperforming with a mere 0.53 mm. Additionally, in Tuntungan, SARIMA demonstrates its superior 

performance with a notably low MAE compared to LSTM. This analysis highlights the varying efficacy 

of both models across different locations, emphasizing the importance of considering regional factors in 

rainfall prediction (Figure 3).  Overall, SARIMA shows better performance than LSTM in three out of 

the four locations (Kualanamu, Belawan, and Tuntungan), demonstrating significantly lower forecasting 

errors. LSTM only performs better in Sampali. This analysis suggests that SARIMA generally provides 

more accurate forecasts than LSTM for the locations considered, with Tuntungan showing the most 

significant improvement when using SARIMA over LSTM. 
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Figure 3. The MAE Comparison Graph Shows the MAE Values for LSTM and SARIMA Models Across Four 

Locations: Sampali, Kualanamu, Belawan, and Tuntungan.  

 

3.3.3. Correlation Coefficient (r) 

The correlation comparison graph is plotted on an actual scale (mm). The highest correlation values for 

both models are in Sampali, with values of 0.65 mm for LSTM and 0.56 mm for SARIMA in Belawan, 

and the smallest values are in Tuntungan, with 0.49 mm for LSTM and 0.47 mm for SARIMA in 

Kualanamu (Figure 4). 

 
Figure 4. The Correlation Coefficient (r) Comparison Graph Shows the MAE Values for LSTM and SARIMA 

Models Across Four Locations: Sampali, Kualanamu, Belawan, and Tuntungan. 

The correlation comparison graph, plotted on an actual scale (mm), provides insights into the relationship 

between predicted and actual rainfall values for both LSTM and SARIMA models across four locations. 

In Sampali, both models achieve their highest correlation values, with LSTM at 0.65 mm and SARIMA 

at 0.56 mm, indicating a strong relationship between predicted and observed values in this location. 

Conversely, in Belawan, the correlation values are notably lower, with SARIMA showing a correlation 

of 0.56 mm.  The smallest correlation values are observed in Tuntungan for LSTM (0.49 mm) and in 
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Kualanamu for SARIMA (0.47 mm), suggesting weaker predictive accuracy in these areas.  Overall, the 

analysis reveals that while both models perform well in Sampali, their effectiveness varies in other 

locations, with SARIMA generally providing more stable and reliable predictions across the board except 

in areas where LSTM shows higher correlations. This highlights the importance of location-specific 

model selection for optimal rainfall prediction accuracy. 
 

3.4 Temporal Pattern Analysis 

Temporal Pattern Analysis for every location can be found below: 

3.4.1. Sampali  

In Sampali, there are differences in the values generated by the SARIMA model, which are quite different 

from the observed values, with only a few closely approaching the observed values. The graph in the 

LSTM (Long Short-Term Memory) method with monthly data shows two curves. The gray line 

(Observed) indicates the actual rainfall values with significant variations at some points. There are sharp 

peaks and drastic drops in this data. The blue line (LSTM) shows the prediction results from the LSTM 

model. These predictions tend to be smoother and follow the general trend of the observed data, although 

they do not always accurately capture all peaks and valleys. These results are obtained using a batch size 

of 64 with a correlation value of 0.65 for the LSTM model (Figure 5). 

 
Figure 5. Temporal Patterns of Predicted Monthly Rainfall using SARIMA and LSTM Models 

Compared to Observed Data in Sampali from January 2019 to December 2020. 

 

The provided graph compares the monthly rainfall from January 2019 to December 2020 as observed 

blue line) and predicted by two models: LSTM (Long Short-Term Memory, blue line) and SARIMA 

(Seasonal Autoregressive Integrated Moving Average, orange line). The observed rainfall data shows 

significant variability, with notable peaks around May 2019, August 2019, and September 2020. The 

LSTM model generally follows the observed trends but shows more fluctuations and is sometimes closer 

to the observed values. In contrast, the SARIMA model provides a smoother prediction, capturing the 

overall seasonal trends but missing some of the sharper peaks and troughs present in the observed data. 
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Both models show a similar trend to the observed data but differ in their response to short-term 

fluctuations. 
 

3.4.2. Kualanamu  

The SARIMA model used in Kualanamu seems to provide a rough representation of the actual data, with 

weaknesses in capturing extreme changes. This may require parameter adjustments or other model 

approaches that can be more sensitive to sharp fluctuations in the data. Overall, the predictions generated 

by the LSTM model in Kualanamu follow the general trend of the observed data. The LSTM model is 

quite adept at capturing seasonal patterns and cycles in the data. Some major seasonal peaks and valleys 

are well followed, although the prediction amplitudes are often lower or higher than the actual data. 

These results are obtained using a batch size of 64 with a correlation value of 0.54 for the LSTM model 

(Figure 6). 

 
Figure 6. Temporal Patterns of Predicted Monthly Rainfall using SARIMA and LSTM Models Compared to 

Observed Data in Kulanamu from January 2019 to December 2020. 

The graph presents a comparison of observed monthly rainfall (blue line) against predictions from LSTM 

(blue line) and SARIMA (orange line) models from January 2019 to December 2020. The observed 

rainfall data exhibits high variability with significant peaks around May 2019, September 2019, and 

September 2020. The LSTM model captures the general pattern of the observed rainfall, closely 

following the sharp increases and decreases, but sometimes exaggerates the magnitude of these 

fluctuations. Conversely, the SARIMA model provides a smoother prediction, successfully identifying 

the overall trend but often underestimating the magnitude of the rainfall peaks and failing to capture 

some short-term variations. Overall, while both models reflect the seasonal patterns of rainfall, the LSTM 

model is more responsive to sudden changes, whereas the SARIMA model offers a steadier, less variable 

forecast. 

3.4.3. Belawan  

In Belawan, the graph illustrates how the SARIMA model attempts to predict future values from time 

series data based on its historical patterns. Although this model's predictions are quite good at following 

the general trend, there are limitations in capturing extreme fluctuations, which are a common challenge 

in time series modeling. The orange line indicates predictions that tend to be smoother and follow the 

general trend of the observed data, although they do not accurately capture all peaks and valleys. On the 
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other hand, the LSTM model demonstrates good capability in capturing the general trends and seasonal 

patterns of monthly rainfall data. Although it does not always accurately capture all peaks and valleys. 

These results are obtained using a batch size of 32 with a correlation value of 0.60 for the LSTM model 

(Figure 7). 

 
Figure 7. Temporal Patterns of Predicted Monthly Rainfall using SARIMA and LSTM Models Compared to 

Observed Data in Belawan from January 2019 to December 2020. 

 

The graph depicts a comparative analysis of observed monthly rainfall (blue line) and the predictions 

generated by the LSTM (Long Short-Term Memory, blue line) and SARIMA (Seasonal Autoregressive 

Integrated Moving Average, orange line) models from January 2019 to December 2020. The observed 

data exhibits considerable fluctuations, with notable peaks in May 2019, September 2019, and December 

2020. The LSTM model closely follows the observed data's trends and captures the peaks and troughs 

more accurately, though it sometimes overestimates the magnitude of rainfall. This indicates the LSTM 

model's strength in handling complex patterns and short-term variations. In contrast, the SARIMA model 

provides a smoother and more consistent prediction, effectively capturing the overall seasonal trend but 

often underestimating the intensity of rainfall peaks and missing some short-term variability. The 

SARIMA model's predictions are less volatile, offering a more stable but less detailed forecast. 

Therefore, while the LSTM model demonstrates better performance in tracking the rapid changes in 

rainfall, the SARIMA model excels in offering a generalized view of seasonal trends. 

 

3.4.4. Tuntungan 

The graph in Tuntungan appears to be less responsive to extreme fluctuations. For example, the high 

peaks around points 237-239 and sharp declines around point 241 are not fully reflected in the prediction 

line. The blue line (Observed) shows observed data with significant fluctuations at some points. There 

are several sharp peaks and drastic declines in this data. The orange line (Predicted) indicates the 

prediction results from the SARIMA model. These predictions tend to be smoother and do not always 

capture sharp peaks and valleys in the observed data.  In contrast to the prediction data in the previous 

city, Tuntungan shows quite different results from the observational data, although there are still some 
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points that approximate. In this city, there are still difficulties in predicting and capturing extreme 

fluctuations in the data. These results are obtained using a batch size of 64 with a correlation value of 

0.49 for the LSTM model (Figure 8). 

 
Figure 8. Temporal Patterns of Predicted Monthly Rainfall using SARIMA and LSTM Models Compared to 

Observed Data in Tuntungan from January 2019 to December 2020. 

The graph displays monthly rainfall data from January 2019 to December 2020, comparing observed 

rainfall (blue line) with predictions from two models: LSTM (blue line) and SARIMA (orange line). The 

observed rainfall exhibits significant variability, with peaks around mid-2019, early 2020, and mid to 

late 2020. Both models attempt to capture this variability but differ in their performance.  The LSTM 

model shows greater fluctuations and often fails to align closely with the observed data, particularly in 

capturing the higher peaks and some of the lower troughs. This suggests that while LSTM can model 

complex patterns, it struggles with the high variability and extreme values present in the observed rainfall 

data. The SARIMA model, on the other hand, demonstrates a more smoothed prediction, capturing some 

of the general trends but missing the sharper peaks and valleys. SARIMA's performance indicates a better 

fit for the general trend but less sensitivity to abrupt changes in rainfall.  Overall, neither model perfectly 

replicates the observed data, but the SARIMA model appears to provide a more stable prediction, albeit 

at the cost of missing some of the finer details captured by the LSTM model. This analysis highlights the 

challenge of accurately modeling highly variable time series data like monthly rainfall. 
 

The comparison results between the SARIMA and LSTM models across four locations are summarized 

in the Table 2. The evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Correlation Coefficient (r). 
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Table 2. Comparison Result between the SARIMA and LSTM 

Location Metric SARIMA LSTM 

Sampali RMSE (mm) 15.67 14.45 

 MAE (mm) 0.53 2.95 

 Correlation (r) 0.56 0.63 

Kualanamu RMSE (mm) 18.45 19.30 

 MAE (mm) 4.12 4.50 

 Correlation (r) 0.47 0.54 

Belawan RMSE (mm) 28.36 27.68 

 MAE (mm) 5.79 5.65 

 Correlation (r) 0.56 0.60 

Tuntungan RMSE (mm) 2.61 3.10 

 MAE (mm) 0.45 1.20 

 Correlation (r) 0.49 0.49 

To better understand the performance differences between SARIMA and LSTM models across the study 

locations, further analysis of spatial variability is essential. Each location's unique geographical and 

meteorological characteristics can significantly influence the prediction accuracy of these models. By 

examining the spatial variability, researchers can identify specific patterns and factors contributing to the 

models' strengths and weaknesses in different areas. This analysis can reveal the underlying reasons why 

certain models perform better in specific locations, aiding in the development of more tailored and 

effective predictive models.  The practical implications of the performance differences between 

SARIMA and LSTM models are significant for field applications. For instance, areas where SARIMA 

shows higher accuracy may benefit from its use in operational settings, such as agricultural planning and 

water resource management, due to its ability to capture linear trends and seasonality. On the other hand, 

LSTM's superior performance in areas with complex, non-linear patterns suggests its suitability for 

applications requiring detailed temporal predictions, such as flood forecasting and climate change impact 

assessments. Understanding these implications helps stakeholders choose the most appropriate model 

for their specific needs, ensuring better decision-making and resource allocation.  

 

4. Conclusion 

The SARIMA and LSTM models both demonstrate distinct capabilities and limitations in predicting 

monthly rainfall data. SARIMA excels in capturing general trends and seasonal patterns, providing a 

reliable overview of data movement, but it struggles with accurately predicting extreme changes and 

sharp fluctuations, leading to misalignments during high peaks and low valleys. In contrast, the LSTM 

model shows a stronger ability to follow the general direction and seasonal patterns of the data, 

sometimes closely matching observed values. However, it also faces challenges in accurately predicting 

very sharp peaks and valleys. Enhancing LSTM's prediction accuracy could involve optimizing hyper 

parameters, adding more training data, or integrating additional methods to handle high variability in the 

data. Overall, while SARIMA offers stability in trend prediction, LSTM's flexibility makes it more adept 

at capturing complex patterns, though both require further refinement for precise rainfall forecasting.   

Future model development should focus on integrating more advanced techniques and hybrid models 

that combine the strengths of both SARIMA and LSTM. For instance, incorporating external climate 

variables and satellite data could enhance the predictive accuracy of both models. Additionally, 

developing adaptive models that can automatically adjust parameters based on real-time data inputs may 

further improve the reliability of rainfall predictions.  The findings of this study have significant 
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implications for stakeholders in rainfall prediction applications. Accurate and reliable monthly rainfall 

forecasts are crucial for sectors such as agriculture, water resource management, disaster preparedness, 

and urban planning. By providing high-quality rainfall data, the models can help stakeholders make 

informed decisions, optimize resource management, and develop effective mitigation strategies to reduce 

the impact of hydro-meteorological disasters. Enhanced predictive capabilities also support long-term 

planning and climate adaptation efforts, ensuring resilience against future climatic challenges. 

The study offers a comprehensive comparison of SARIMA and LSTM models, providing clear 

performance metrics and detailed methodology, which ensures replicability and helps in identifying the 

most suitable model for different regions. It provides region-specific insights, aiding local stakeholders 

in making informed decisions. However, the research faces limitations such as data availability and 

resolution, the complexity of LSTM models, a limited geographic scope, and potential overfitting issues. 

For future research, integrating SARIMA and LSTM into a hybrid model could enhance prediction 

accuracy by combining linear and non-linear modeling strengths. Expanding the study to more diverse 

regions, utilizing high-resolution data, and incorporating external variables like temperature and 

humidity can further improve predictions. Developing adaptive models that update in real-time and 

exploring other advanced machine learning techniques such as CNNs or attention-based mechanisms are 

also promising areas. 
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